CLIPPER DUET

SPEED

TOTAL

TRIP

ILLUM

DEPTH

FEET

23.7 MPH

36.8 FEET

Duet

CLIPPER DUET

COMBINED LOG

AND

ECHO SOUNDER

DESIGNED AND MANUFACTURED IN ENGLAND

RoHS

2002/95/EC

CE

CE
Table of Contents

- **INTRODUCTION** 2
- **INSTALLING THE DISPLAY** 2
- **INSTALLING THE LOG PADDLE WHEEL UNIT** 3
- **INSTALLING THE ECHO SOUNDER TRANSDUCER** 5
- **NOTES ON ELECTRICAL INTERFERENCE** 6
- **USING THE INSTRUMENT** 7
- **SETTING THE MINIMUM DEPTH ALARM** 7
- **SETTING THE SPEED ALARM** 8
- **CHANGING THE OPERATING CONFIGURATION** 8
- **TO SELECT THE OPERATING UNITS** 8
- **SETTING THE KEEL OFFSET** 9
- **CHANGING THE GAIN THRESHOLD** 9
- **CHANGING THE LOG CALIBRATION** 10
- **OPERATION FLOW DIAGRAM** 12
INTRODUCTION

The Clipper Duet is a combined log and depth sounder. It is supplied complete with paddlewheel unit, transducer, and alarm bleeper. The Duet is designed to be powered from the vessel’s 12 volt battery supplied.

INSTALLING THE DISPLAY

Select a convenient position for the display on a panel or bulkhead.

The site must be flat and the cavity behind the panel must remain dry at all times. (The cable entry is deliberately not sealed to ensure adequate ventilation. This prevents misting of the display).

Cut a hole in the panel 87mm wide and 67mm high. Bring the wiring through the hole in the panel and connect the black wire to negative and red to positive. (See Figure 1). It is wise to use a fused supply to provide protection should a fault occur. The current consumption is very small, so any supply with at least a 1/4 amp fuse is more than adequate.

![Figure 1 - Wiring Installation](image-url)
Unscrew and remove the wing nut from the rear of the instrument and remove the stainless steel clamping bracket. Fit the “O” ring seal into the groove in the panel mounting face of the instrument. Ensure that it is correctly lying in its groove before fitting the instrument to the panel, which provides the watertight seal for the display.

Fit the instrument into the panel, fit the stainless clamp over the studs, fit and tighten the wing nut finger tight only.

It is important that the O-ring rubber seal makes good contact with the panel to prevent water getting behind the unit and entering the cavity behind the panel.

It is good practice to run the cables vertically downwards from the unit, even if they later have to rise to connect to the vessel’s supplies. Doing so prevents any water that might get onto the cables from running back along the cables and into the unit.

INSTALLING THE PADDLE WHEEL UNIT.

IMPORTANT: Read and fully understand the installation instructions and only proceed if you possess the required skills and correct tools.

WARNING: Always wear safety glasses and a dust mask when installing to avoid personal injury.

WARNING: Immediately check for leaks when the boat is put back in the water.

WARNING: The O-rings must be intact and, the lower one, properly lubricated to make a watertight seal.

CAUTION: Never use solvents or products that contain solvents which could attack the plastic.

IMPORTANT: The sensor in manufactured from high impact polymer and is designed for use on the outer skin of a fibre glass hull. Never install the sensor in a wooden hull, since swelling of the wood could fracture the plastic.
IMPORTANT: Ensure the hull is of constant thickness under the skin fitting flange so the nut will fit squarely against the hull.

The paddle wheel should be installed at a point in the hull where:

1/ It is immersed at all attitudes under power or sail.

2/ The blades of the paddle wheel are presented with a smooth flow of water corresponding to the vessel's speed through the water. On displacement hulls this is usually about amidships, but on planing hulls it should be as far aft as possible.

3/ It should be easily accessible in the bilges for cleaning and laying up. A blanking cap is provided to seal the skin fitting when the paddle wheel is removed.

4/ It is not vulnerable to damage from unforgiving surfaces such as trailers and lifting slings.

Once a suitable location has been selected, with the boat out of the water, drill a 42mm hole perpendicular to the hull from the outside of the boat. Now sand and clean the hole, inside and outside, to ensure the sealant will properly bond to the hull.

Using a proprietary brand of marine silicone sealant, apply about 2mm of sealant around the skin fitting flange where it contacts the hull and also up the sidewall to a distance 3mm higher than the combined thickness of the hull and the securing nut. This will ensure there is sealant in the threads to seal the hull and to hold the nut securely in place. The nut has a groove on its underside which should also be filled with silicone. From the outside of the hull, push the housing into the mounting hole using a twisting motion to squeeze out excess sealant. With someone outside holding the skin fitting in position, from the inside apply a 2mm thick layer of sealant around the hole equal to the diameter of the securing nut. Carefully tighten down the nut taking care not to over tighten it, just over finger tight is enough.
Carefully remove all surplus sealant from the inside and outside of the hull and leave until the sealant has cured. It is recommended that the area around the skin fitting is thoroughly cleaned and the whole assembly be fibre glassed into the hull as shown in fig 2. ensuring that the top 20mm of thread remains free of sealant.

The paddle wheel unit can now be slid into the housing so that it is exposed to the water flow, with the arrow pointing forward along the centre line of the vessel. It is recommended that a little silicone grease is smeared over the rubber O-ring to keep the unit free. Tighten the retaining nut onto the top of the housing, and plug the cable into the ‘paddlewheel’ socket on the display. For added protection it is again recommended that the plug is lightly covered with silicone grease.

INSTALLING THE ECHO SOUNDER TRANSDUCER

The transducer can be mounted in one of three ways:

(i) The transducer face can be bonded directly to the inside of the hull. (Some energy is lost to the hull but the loss in performance is, for most G.R.P hulls, hardly noticeable).

(ii) A through hull mount is available from your dealer.

(iii) The transducer can be positioned inside a G.R.P. Hull by means of an In Hull Transducer Kit.
The latter method of installation offers the advantage that the transducer can easily be removed for examination or installation elsewhere. It should be mentioned however, that although the accuracy will in no way be affected by installing the transducer inside the hull, the maximum range sensitivity may be reduced, depending on the thickness and quality of the glass fibre. The In Hull Kit is available direct from NASA Marine or your local chandler.

Whichever method is selected, the best location still has to be found.

Select a position below the water level where the transducer will point substantially vertically downwards towards the seabed, and where the transducer and its cable (do NOT shorten the transducer cable) will be well clear of equipment which might be a source of interference. Such sources might include the engine ignition and starting systems, alternators and dynamos, electric pumps, etc. The position should also be well clear of large masses of bubbles or cavitation near propellers or sudden changes in hull profile which could disrupt the signal.

To test the suitability of the location when the vessel is in the water at a reasonable depth, press a little sticky chewing gum on the surface of the transducer and stick it down to the inside of the hull (it may be necessary to remove dirt and oily residue first). The unit can then be tested over a range of speeds and depths. If the location is satisfactory, the chewing gum must be removed and the transducer permanently mounted using one of the methods described previously. (Note: do NOT shorten the transducer cable).

It is important that the face of the transducer is thoroughly bonded down to the hull. A single air bubble will cause a considerable loss in performance.

The transducer and the place of mounting must be kept entirely free of any antifouling compound as this can also effect the performance of the unit.

Plug the transducer into the ‘transducer’ socket on the display.
NOTES ON ELECTRICAL INTERFERENCE

External electrical interference is characterised by persistent, random numbers on the display which obscure the true depth reading on the depth sounder.

This is caused by large amplitude voltage “spikes” generally associated with the engine’s alternator and/or ignition system which has not ben properly suppressed. These “spikes” may find their way into the sensitive amplifier section of the depth sounder in two ways:

(a) Through the craft’s common power supply or

(b) Through direct radiation from the source or interference.

To reduce the possibility of induced interference from the engine’s generator and/or ignition system, choose a position as far away from the engine as possible and run the cable from the transducer as far as practicable from the engine. Do NOT cut the transducer cable, but stow excess away from any possible source of electrical interference.

USING THE INSTRUMENT

When power is connected to the instrument it will show the depth and boat speed. Pressing TRIP will show the trip distance, that is the distance since power was connected. Disconnecting the power will reset the TRIP to zero. Pressing TOTAL will show the accumulated total distance travelled. This total cannot be reset. Pressing ILLUM will turn on the display backlight. The lighting is concentrated over the active part of the display, the top corners being omitted. Pressing ILLUM again will turn the backlight off. Pressing SPEED will return to boat speed. The instrument will show depth at all times. If the echo is temporarily lost then the depth units will momentarily flash. If the echo is completely lost then the display will show OUT.
SETTING THE SPEED ALARM

The speed alarm will give an audible and visual warning if the boat speed exceeds a preset limit. To set this speed limit press SPEED and TOTAL simultaneously. The lower half of the display will show SPD, the upper half will show the current speed limit setting. Use TRIP to decrement and TOTAL to increment the setting. When the required minimum depth setting has been selected press SPEED. This will enter the new value into the memory and return to normal operation. To arm the alarm press TRIP and TOTAL simultaneously. Pressing TRIP and TOTAL simultaneously a second time will disable the alarm (without altering the alarm setting). The bell symbol will show only when the alarm is armed and will flash when the alarm is active.

SETTING THE MINIMUM DEPTH ALARM

This is done during normal operation. Press SPEED and TRIP simultaneously. The instrument will show SHA, the bell and the current minimum depth setting. Use TRIP to decrement the setting and TOTAL to increment the setting. When the required minimum depth setting has been selected press SPEED. This will enter the new value into the memory and return to normal operation. To arm the alarm press TRIP and TOTAL simultaneously. Pressing TRIP and TOTAL simultaneously a second time will disable the alarm (without altering the alarm setting). The bell symbol will show only when the alarm is armed and will flash when the alarm is active.

CHANGING THE OPERATION CONFIGURATION

This allows the user to program the instrument to operate in the units of choice i.e. feet/metres, miles, nautical miles or kilometres. It also gives access to the gain threshold, the keel offset, the speed alarm and the log calibration settings. To enter the configuration mode turn the power off press and keep depressed the ILLUM key, then turn the power to the instrument on. When the key is released the display will show SET ENG. The instrument is now in the configuration mode.
TO SELECT THE OPERATING UNITS

Put the instrument into the configuration mode. The display will show SET ENG. Press TOTAL. The display will now show SET followed by the current speed units. (i.e. Knots, miles/hour or kilometres/hour). Use the TOTAL key to roster through the speed units. Press SPEED to enter the desired units. The display will briefly show CON to confirm the operation. The display will now show SET followed by the current depth units (i.e. Feet or metres). Use the TOTAL key to select the desired units. Pressing SPEED will enter the desired units.

The display will briefly show CON to confirm the operation and then return to the SET ENG display. If no further settings are to be made then pressing the ILLUM key will exit the configuration mode and return to normal operation.

SETTING THE KEEL OFFSET

The Echo Sounder measures the depth from the transducer to the seabed. If the craft has a keel it is often more convenient to show the depth from the keel to the seabed. To operate in this way the depth of the keel (keel offset) must be entered into the instrument as follows:

Put the instrument into the configuration mode. The display will now show SET ENG. Press SPEED, the upper half of the display will show USET and the lower half the current keel offset value. Use TRIP to decrement and TOTAL to increment this value. Pressing SPEED will enter this new value. The display will briefly show CON to confirm the operation and then return to the SET ENG display. If no further settings are to be made then pressing the ILLUM key will exit the configuration mode and return to normal operation.
CHANGING THE GAIN THRESHOLD

The Echo Sounder emits a high frequency pulse which bounces off the seabed back to the transducer. Echoes from nearby objects are much stronger than those from distant objects so an automatic gain control compensates for these different strength signals. However, reflections from nearby turbulence or bubbles can sometimes be confused with those from the bottom. To prevent nearby reflections from causing a problem, the sensitivity to nearby objects can be reduced.

The depth at which the sensitivity returns to normal is called the Gain Threshold. For example, if the Gain Threshold is set at 2 metres then the gain is low for echoes between 0 and 2 metres. The gain remains normal for echoes over 2 metres. To adjust the gain threshold put the instrument into the configuration mode. The display will show SET ENG. Press SPEED. The display will show the keel offset value. Press SPEED again, the upper half of the display will show THR and the lower half of the current Gain Threshold. Use TRIP to decrement and TOTAL to increment this value. Pressing SPEED will enter the new value. The display will briefly show CON to confirm the operation and then return to the SET ENG display. If no further settings are to be made then pressing the ILLUM key will exit the configuration mode and return to normal operation.

CHANGING THE LOG CALIBRATION

The calibration factor determines the number of revolutions of the paddle required to represent a fixed distance. The instrument is pre-calibrated in the factory. However, the type of hull and the position of the paddlewheel unit may affect the performance causing the speed (and distance) to under-read or over-read.
To correct any error, put the instrument into the configuration mode. The display will show SET ENG. Press TRIP. The display will show CAL and the current calibration factor (which is factory set to 100% to give correct readings in free flow conditions). The factor can be incremented to a total of 150% by pressing TOTAL and can be decremented to a minimum of 70% by pressing TRIP.

The general rule is that if the instrument over-reads, the factor must be reduced, and if it under-reads, the factor must be increased, the percentage error in the readings is the same percentage change that must be made. For example if the instrument is found to under-read by 6% then the calibration factor should be increased by 6%. Pressing SPEED will enter a new calibration factor and return to the SET ENG display. If no further settings are to be made then pressing the ILLUM key will exit the configuration mode and return to normal operation.
PUT IN CONFIGURATION MODE

SET EnG

SPEED

SET 0.0 DEPTH MTRS

TRIP

TOTAL

SET 1.2 DEPTH MTRS

SPEED

SET 1.0 CON MPH

THR 0.0 DEPTH MTRS

TRIP

TOTAL

THR 1.8 DEPTH MTRS

SPEED

CON 1.8 DEPTH MTRS

SET ENG

ILLUM

RETURN TO NORMAL OPERATION
IMPORTANT READ THIS BEFORE UNPACKING INSTRUMENT

Prior to unpacking this instrument read and fully understand the installation instructions. Only proceed with the installation if you are competent to do so. Nasa Marine Ltd. will not accept any responsibility for injury or damage caused by, during or as a result of the installation of this product. Any piece of equipment can fail due to a number of causes. Do not install this equipment if it is the only source of information and its failure could result in injury or death. Instead return the instrument to your retailer for full credit. Remember this equipment is an aid to navigation and not a substitute for proper seamanship. This instrument is used at your own risk, use it prudently and check its operation from time to time against other data. Inspect the installation from time to time and seek advice if any part thereof is not fully seaworthy.

LIMITED WARRANTY

Nasa Marine Ltd. warrants this instrument to be substantially free of defects in both materials and workmanship for a period of one year from the date of purchase. Nasa Marine Ltd. will at its discretion repair or replace any components which fail in normal use within the warranty period. Such repairs or replacements will be made at no charge to the customer for parts and labour. The customer is however responsible for transport costs. This warranty excludes failures resulting from abuse, misuse, accident or unauthorised modifications or repairs. In no event shall Nasa Marine Ltd. be liable for incidental, special, indirect or consequential damages, whether resulting from the use, misuse, the inability to correctly use the instrument or from defects in the instrument. If any of the above terms are unacceptable to you then return the instrument unopened and unused to your retailer for full credit.

Name ________________________________

Address ________________________________

Dealer Name ________________________________

Address ________________________________

Date of Purchase ________________________________

Proof of purchase may be required for warranty claims.

Nasa Marine Ltd.
Boulton Road, Stevenage, Herts SG1 4QG England

EU Declaration of Conformity
This declaration is issued under the sole responsibility of NASA Marine Ltd. This product is in conformity with the relevant Union harmonisation Legislation. Harmonised standards applied: EU directive 2014/30/EU (Electromagnetic compatibility) EN60945:2002-08

The original Declaration of Conformity certificate can be requested at info@nasamarine.com

THIS PRODUCT IS INTENDED FOR USE ONLY ON NON SOLAS VESSELS